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This paper describes the evolution of an incompressible turbulent boundary layer on
the flat wall of an ‘S’-shaped wind tunnel test section under the influence of changing
streamwise and spanwise pressure gradients. The unit Reynolds number based on the
mean velocity at the entrance of the test section was fixed to 106 m−1, resulting in
Reynolds numbers Reδ2

, based on the streamwise momentum thickness and the local
freestream velocity, between 3.9 and 11×103. The particular feature of the experiment
is the succession of two opposite changes of core flow direction which causes a sign
change of the spanwise pressure gradient accompanied by a reversal of the spanwise
velocity component near the wall, i.e. by the formation of so-called cross-over velocity
profiles. The aim of the study is to provide new insight into the development of the
mean and fluctuating flow field in three-dimensional pressure-driven boundary layers,
in particular of the turbulence structure of the near-wall and the cross-over region.

Mean velocities, Reynolds stresses and all triple correlations were measured with a
newly developed miniature triple-hot-wire probe and a near-wall hot-wire probe which
could be rotated and traversed through the test plate. Skin friction measurements
were mostly performed with a wall hot-wire probe. The data from single normal wires
extend over wall distances of y+ & 3 (in wall units), while the triple-wire probe covers
the range y+ & 30. The data show the behaviour of the mean flow angle near the
wall to vary all the way to the wall. Then, to interpret the response of the turbulence
to the pressure field, the relevant terms in the Reynolds stress transport equations are
evaluated. Finally, an attempt is made to assess the departure of the Reynolds stress
profiles from local equilibrium near the wall.

1. Introduction
Despite the importance of three-dimensional turbulent boundary layers (3DTBL)

in internal and external flows, such as in turbomachines and over aircraft wings
and fuselages, the understanding of the physics and the turbulence models for such
flows are still poorly developed in comparison with two-dimensional boundary layers.
The state of the art in 3DTBL research has been reviewed by Eichelbrenner (1973),
Johnston (1976), Cousteix (1986), Ölçmen & Simpson (1992), Eaton (1995) and
Johnston & Flack (1996).
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Figure 1. Top view and cross-section (on the right) of the ‘S’-shaped wind tunnel test section. (The
measuring plate is on the underside of the roof, i.e. y points into the page.) Dimensions in mm.
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Figure 2. Typical pressure-driven three-dimensional boundary layer with external streamline
coordinate system (ESCS): (a) unilaterally (b) bilaterally skewed.

The present experiment deals with a pressure-driven turbulent boundary layer on
the flat wall of an ‘S’-shaped wind tunnel test section shown on figure 1 in which
the direction of the spanwise pressure gradient changes sign between the two bends
of the ‘S’. This causes the unilaterally skewed velocity profile at the exit of the first
bend (figure 2a) to turn into a so-called cross-over velocity profile in which the angle
of the mean flow vector relative to the free-stream direction changes sign in the
low-momentum region near the wall (figure 2b).

The objective of this study is to investigate the development of the mean flow
and of the turbulence structure in the boundary layer due to the unilateral and
bilateral skewing. The emphasis is on the inner layer for which measurements are
scarce or have not been available in the cross-over region. The present investigation
involved measurements of mean and fluctuating velocity profiles at 33 primary and
16 secondary stations as well as the determination of static pressure and skin friction
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distributions. The secondary locations were arranged around selected primary stations
to evaluate the spatial derivatives arising in the Reynolds stress transport equations.

Eichelbrenner (1963) and Eichelbrenner & Peube (1966) were the first to draw
attention to cross-over profiles. Klinksiek & Pierce (1970) measured mean velocity
profiles with two-sided lateral skewing in an ‘S’-shaped channel of rectangular cross-
section and Webster, DeGraaff & Eaton (1996) in a boundary layer over a swept
bump. Recent measurements were performed by Schwarz & Bradshaw (1992, 1994)
and by Compton & Eaton (1995) in a curved duct with unilaterally skewed velocity
profiles and by Ölçmen & Simpson (1995b), in the flow of a wing-body junction.

Unilaterally and bilaterally skewed velocity profiles in a relatively thick (35–90 mm)
3DTBL were generated in the ‘S’-shaped wind tunnel at the Ecole Polytechnique
Fédérale de Lausanne (EPFL). First results obtained in this tunnel were published by
Truong & Brunet (1992) and used as a validation for numerical methods (Ryhming,
Truong & Lindberg 1992). Since then, the flow uniformity in the test section has
been improved, a temperature control introduced and the curvature of the sidewall
of the test section increased. The objective of good near-wall measurements made
it necessary to use wall hot-wire probes in addition to the surface fence for skin-
friction measurements, to use miniature hot-wire probes and, above all, to develop a
miniature triple-wire probe (THWP) for field measurements. The THWP permitted
measurements down to y+ ≈ 30 while the single-wire probe, the prongs of which were
traversed through the wall, yielded data down to y+ ≈ 3.

The only other measurements in a 3DTBL below y+ of 40 were performed by means
of LDA by Chesnakas, Simpson & Madden (1994), Ölçmen & Simpson (1995a,b),
Chesnakas & Simpson (1996) and Compton & Eaton (1995) but their experiments
did not include cross-over profiles in the sense defined above.

In the following, we describe the experimental facility and measuring techniques in
§ 2, the mean flow evolution in § 3 and the turbulence measurements including higher
moments and space correlations at selected stations in § 4. A discussion of the local
non-equilibrium of Reynolds stresses and other conclusions are finally presented in
§ 5.

2. Experimental facility and measuring techniques
The wind tunnel used for this experiment is the closed return tunnel with an ‘S’-

shaped test section of 9 m length and 1 m width at EPFL. It has an axial fan driven
by a thyristor controlled 30 kW DC motor generating a maximum flow velocity
of 45 m s−1. Temperature is controlled automatically by a custom made cooler in
the flow return. It is kept constant within ±0.1 ◦C at the working speed of about
16 m s−1 corresponding to the unit Reynolds number of 106 m−1 chosen for this study.
Downstream of the diffuser the flow enters the settling chamber which contains a
honeycomb and two precisely manufactured perforated metal plates (64% porosity,
see Dengel & Fernholz 1990) to improve the flow uniformity. The nozzle, contracting
in the lateral and vertical direction, has a contraction ratio 7.35:1 and is followed by
a 3 m long straight part of the test section, the ‘S’-shaped part and another 3 m long
straight section (figure 1).

The test section (1 m wide and 0.42 m high) is a sandwich construction with the
tunnel roof used as test plate. This is a polished aluminium plate with an elliptical
leading edge and fitted with 1128 static pressure taps and 43 surface plugs to install
wall probes. The measuring stations for this experiment are located along three lines
following the curvature of the sidewalls: the centreline (M) and two lines 190 mm
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Figure 3. The location of measuring stations in the ‘S’-shaped test section in the tunnel coordinate
system (TCS). The wall-normal coordinate y points into the page.

off centre denoted (U) and (D), respectively (figure 3). The ‘S’-shaped sidewalls are
made of 12 mm thick cast Plexiglas, and the bottom wall consists of Plexiglas plates
reinforced with plastic ribs to increase their rigidity. Slots between the plates, sealed
with soft brushes, allow the traverse of the probe holder to access all measuring
stations from the bottom of the test section. The boundary layers on all four walls
of the test section have a defined origin since the upstream boundary layer is blown
off at the inlet of the test section. For reference, the shaded area on this figure 3
represents the region accessible to a boundary-layer computation started exclusively
with upstream boundary conditions (Parker 1994 and Parker & Bruns 1996). Outside
the shaded region, some of the near-wall fluid originates from the sidewalls.

The main traversing system with five degrees of freedom (three translations plus
probe yaw and roll) was mounted on steel rails underneath the tunnel and extended
into the test section through the slots of its bottom wall. The gooseneck probe holder
was positioned by five stepper motors (Micro-Control) combined with a control unit
(Micro-Control IP 28). The pitch angle had to be adjusted manually. The wall probes
mounted in the plugs of the test plate could be yawed and traversed perpendicular
to the wall, also under computer control (see e.g. Rogers & Head 1969). For a more
detailed description of the wind tunnel and the traversing system the reader is referred
to Truong & Brunet (1992) and to Bruns (1998).

Special care has been taken to achieve a good flow quality in the straight upstream
part of the test section. At the streamwise position x = 1900 mm the mean velocity
distribution u across the tunnel width is constant within ±1% and the skin-friction
distribution varies less than±2%. This uniform skin-friction distribution was obtained
by tripping the boundary layer by means of a 3 mm high ‘Velcro’ strip at a distance
of 100 mm from the leading edge. The free-stream turbulence level is approximately
0.2% over a frequency range 0–20 kHz.
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1 mm

Figure 4. Photo of the triple hot-wire probe (THWP).

By applying a mixture of petroleum, oleic acid and laser-printer toner, a visual
overall picture of the direction of the wall streamlines in the test section was obtained
with an estimated error of ±1◦ (see also Schwarz & Bradshaw 1992).

The static pressure distribution in the test section was measured by means of the
1128 pressure taps (0.5 mm diameter) which were connected via a computer controlled
48 channel Scanivalve (model J, CTRL2 52–56 controller) to pressure transducers
(Furness Controll or ELECTOR) with measuring ranges of 0.5, 1, 5 and 10 mbar.
The output signal was converted to a RS232 signal using a DGH D 1000 series A/D
converter with a sampling rate up to 7 Hz.

Skin-friction measurements were performed by a surface fence (e.g. Vagt & Fernholz
1973) and a wall hot-wire probe (WHWP) (e.g. Wagner 1991; Fernholz et al. 1996)
both calibrated by means of a Preston tube (1.5 mm diameter) in the zero-pressure-
gradient (ZPG) region (station 1M of figure 5). The two skin-friction probes were
used to measure the magnitude and, by rotation, the direction of the skin friction
vector while the WHWP provided also its fluctuating value. The wire of the WHWP
was located 60 µm above the wall, had a diameter of 2.5 µm, an active sensor length
of 0.5 mm, and gold-plated ends. The error estimate for the surface flow direction
measured by the fence is ±0.3◦ with a repeatability of ±0.1◦. The value of mean skin
friction from the WHWP deviates on average by ±2% from that of the surface fence
with maximum deviations of up to 6% at the two stations furthest downstream (10D
and 11D).

Instantaneous velocity vectors were measured in the boundary layer by means of
a THWP and all components of the Reynolds stress tensor and the relevant triple
correlations were determined. Details about this miniature probe and its calibration
are given in Bruns & Dengel (1998). Figure 4 shows the THWP with wires arranged
on the sides of an equilateral triangle when viewed from the front. The size of the
measuring volume is defined by the height of this triangle h = 0.39 mm which is
roughly equivalent to h+ = 16 in wall units. All probes were built at the Hermann-
Föttinger-Institut (HFI).

From the wall to y+ ≈ 100 the flow angle α and the velocity components U, W (note
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Turbulence Corresponding u2 v2 and w2 uv and uw vw
intensity wall distance SHWP THWP THWP THWP

30% y+ = 10 −2.5% — — —
20% y+ = 30 −1% −6% −10% −15%

Table 1. Estimate of hot-wire uncertainties.
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Figure 5. Iso-contours of the pressure coefficient cp in the test section.

that mean velocities are denoted by capital letters without overbars throughout the
text), u′ and w′ (the fluctuating components of the velocity) were measured by a single-
wire probe (SHWP) with prongs that were traversed through its rotatable wall plug
in order to cause a minimal flow disturbance. Both the THWP and the SHWP were
equipped with 2.5 µm wires with gold-plated ends and an active length l to diameter d
ratio of 200. The hot-wire probes were operated using constant-temperature hot-wire
anemometers (TSI-IFA 100). Each hot-wire signal was amplified and filtered with a
cut-off frequency of 20 kHz using a built-in signal conditioner. The data were recorded
and stored on a transient recorder (Krenz TRC 6010) with three A/D channels of 12
bit resolution. For further processing the data were transferred to a Pentium PC via
a GPIB interface. At each measuring point 32 ksamples were recorded at a sampling
rate of 1 kHz with the filter cutoff reduced to 500 Hz. In order to achieve a higher
frequency resolution, spectra and space correlations were measured with a sampling
rate of 50 kHz.

During the development period of the THWP many comparative measurements
were performed using X-wire probes (XHWP) for the u′v′- and u′w′-components.
A detailed description may be found in Bruns (1998) and it suffices here to note
that for locations y+ > 100 the various miniature probes showed good agreement.
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Figure 6. Pressure coefficient (top), skin-friction coefficient (middle) and magnitude of external
velocity (bottom, with Uref ≈ 16 m s−1) on the three lines (U), (M) and (D).

Uncertainties for the THWP are presented in table 1 for wall distances y+ = 10 and
30% for the observed typical turbulence intensities of 30% and 20%, respectively.

3. Mean flow evolution
A first impression of the flow conditions on the test plate of the ‘S’-duct is obtained

from the iso-lines of the pressure coefficient cp, cf. (3.1), on the test plate shown
in figure 5, where the coordinates of the measuring stations for mean velocity and
Reynolds stress profiles are shown again. The station numbers 1 to 11 used in the
following refer to common x-positions (in tunnel coordinates) on the three lines
(U = up), (M= middle) and (D =down) of figure 3.

Figure 6 shows the detailed development of the pressure coefficient cp, the skin-
friction coefficient cf and the magnitude of the external or free-stream velocity Ue at
the edge of the boundary layer along the three lines (U), (M) and (D). Here, cp and
cf are defined as

cp =
p(x, z)− pref

1
2
ρU2

ref

(3.1)
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and

cf =
τw(x, z)
1
2
ρU2

ref

, (3.2)

where p(x, z) is the wall static pressure, τw(x, z) the magnitude of the wall shear stress
measured by the surface fence and Uref the mean velocity at the entrance of the
test section. The unit Reynolds number at the entrance of the test section was kept
constant equal to Uref/ν = 106 m−1, Uref ≈ 16 m s−1 throughout this study.

The streamwise pressure gradients are both favourable and adverse, with the
strongest variation along (U) and the weakest one along (M). The cf-distributions are
seen to be essentially mirror images of the cp-distributions (cf. Fernholz & Warnack
1998). This reflects the dominant influence of the streamwise pressure gradient on the
skin-friction coefficient.

The local pressure gradients ∂p/∂x and ∂p/∂z along and normal to the local external
streamline, i.e. in the external streamwise coordinate system which will be used for
most of the following presentation, are plotted in figure 7, made non-dimensional
with ρU3

e /ν (the relation between the local external velocity Ue and and Uref is given
by figure 6). While the streamwise gradients show marked differences between the
lines (U), (M) and (D), the history of the spanwise gradient is essentially the same on
all three lines.

In order to relate the external streamline coordinate system of figure 2 and the
wall streamline coordinate system to the tunnel coordinate system of figure 3, the
development of the angle β of the freestream velocity vector U e and that of the
surface streamline αw with respect to the tunnel coordinate system (TCS) are given in
figure 8(a), while the maximum skewing angle (αw − β) is plotted in figure 8(b). The
heavy line in both graphs represents the angle of the tunnel sidewalls. Skewing of the
mean velocity in the negative spanwise direction is seen to increase until station 5,
then decrease and change sign between stations 8 and 9, where cross-over profiles are
found along all three lines but most distinctly along line (D).
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Figure 8. (a) Development of the mean flow angle in the free stream (β) and at the wall (αw)
relative to the tunnel coordinate system. (b) Maximum skewing angle (αw − β).

Based on the similarity of the development of cp and cf along the three lines (U),
(M) and (D) on the test plate we restrict the following presentation of the effects of
the streamwise and spanwise pressure gradients on the mean and fluctuating velocity
profiles mainly to the stations 1–11 of line (U), while effects specifically associated
with cross-over profiles will be discussed mostly on lines (M) and (D). A complete
documentation for all measuring stations can be found in Bruns (1998).

The profiles of mean velocity magnitude (U2 + W 2)1/2 are plotted in figure 9 in
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Figure 9. Profiles of the mean velocity magnitude (U2 +W 2)1/2 in inner-law scaling on line (U).
The solid line indicates the linear and logarithmic law for a ZPG boundary layer.

inner-law scaling, i.e. made dimensionsless by Uτ = (τw/ρ)1/2 and ν/Uτ, with τw the
magnitude of the wall shear stress as measured by a surface fence and a wall hot-wire
probe, methods independent of the logarithmic law of the wall.

In the inner region of the boundary layer (linear and logarithmic region) the mean
velocity magnitude essentially follows the profile for two-dimensional boundary layers
with zero pressure gradient shown as solid line on figure 9 (for the log-law, the Kármán
constant κ = 0.40 and the intercept c = 5.10 was used), and this independently of
the mild streamwise and spanwise pressure gradients. It is somewhat surprising that
the log-law and the linear law in the viscous sublayer still hold even for cross-over
profiles, suggesting that for our conditions the u-momentum is largely dominant over
the w-momentum. Deviations from the logarithmic law are to be expected only for
more strongly accelerated velocity profiles (e.g. Fernholz & Warnack 1998). For an
extensive review of the near-wall similarity laws the reader is referred to Ölçmen &
Simpson (1992).

In the wake region, deviations are already expected at values of the acceleration
parameter K = (ν/U2

e )(∂Ue/∂x) of the order of 0.3 × 10−6 and are indeed observed
in the present 3DTBL for the same K-range (station 6U of figure 7). For the less
accelerated profiles Coles’ wake function ∆U/Uτ, ranging between approximately 3
in the ZPG-region and −1 at the end of the acceleration along line (U), is lower
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Figure 10. Profiles of the local flow angle (α− β) relative to the free-stream direction
on line (U).

than expected. It must therefore be assumed that the increase of (U2 + W 2)1/2 is
balanced by an equivalent increase of Uτ. This is indeed the case because cf-values
calculated for a two dimensional flow are smaller than those measured in the present
three-dimensional boundary layer (see Bruns 1998, his figure 4.6).

The profiles of the skew angle α(y+) − β, corresponding to the profiles of figure
9 were determined from single hot-wire measurements with the rotation technique,
while the wall flow angles were measured with the wall hot-wire probe located at
y+ ≈ 2. They are presented in figure 10 which shows a monotonic decrease of the
skew angle towards the wall up to station 6U with an overall minimum of −22◦.
Beyond station 7U the skew angle minimum moves away from the wall and the wall
skew angle increases again, crosses zero and reaches a maximum of +2◦ at station
10U. As mentioned before, this cross-over effect is larger along line (D) where the
wall skew angle ranges from −18◦ to +8◦ (not shown here).

To compare the cross-flow behaviour in the outer region with the semi-empirical
model proposed by Squire & Winter (1951) and Hawthorne (1951), the Squire–
Winter–Hawthorne (S-W-H) relation

W

Ue

= 2β

(
1− U

Ue

)
, (3.3)
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the velocity components U and W in the external streamline coordinate system are
presented as polar plots (Gruschwitz 1935; Johnston 1960). Figure 11 pertains to line
(U) on which the strongest crossflow velocity W reaches 23% of U and figure 12
displays the strong cross-over profiles along line (D).

It is obvious from the comparison of our data with the S-W-H relation in figures 11
and 12 that the latter is only useful for mild cross-flow (see also Schwarz & Bradshaw
1993) and fails when cross-over profiles occur.

The present data also allow the resolution of a long lasting discussion in the
literature on whether the direction of the velocity close to the wall is constant or
not in a 3DTBL (a recent example is Parneix & Durbin 1997). If this were the case,
an isotropic eddy viscosity assumption could be used for closure, at least in the wall
region. There is numerical evidence by Pierce & East (1972) and Klinksiek & Pierce
(1973) that the direction of the velocity is not constant as the wall is approached
whereas Goldberg & Reshotko (1984) conclude from a theoretical analysis, based
on matched asymptotic expansions, that velocity vectors are coplanar† near the wall.
It appears, however, that this latter analysis is not applicable for y → 0. Instead,
we develop all velocity components in Taylor series around y = 0 and obtain in a

† We think that ‘coplanar’ is more appropriate than the term ‘collateral’ used in the literature.
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straightforward manner the result for (α− αw)→ 0

α− αw ≈ W

U
= 1

2
Π (WSCS)
z y+(1− 1

2
Π (WSCS)
x y+) + 0(y+3) (3.4)

where Π (WSCS)
x = (ν/ρU3

τ )∂p/∂x and Π (WSCS)
z = (ν/ρU3

τ )∂p/∂z are the streamwise
and cross-stream pressure gradients in wall-streamline coordinates. Since Reynolds
stresses enter the solution only at O(y+3), the above relation is exact to O(y+2) and
shows that for Π (WSCS)

z 6= 0 no region of coplanar velocity vectors exists next to the
wall.

The evaluation of the above relation for the flow angle requires accurate mea-
surements of the pressure gradients as well as of the skin-friction velocity. Direct
measurements of the near-wall flow angle by means of hot-wire or three-hole probes
are often detrimentally affected by probe/flow interference (e.g. Vagt & Fernholz
1979). However, the WHWP and the SHWP traversed through the wall (as in Rogers
& Head 1969) have provided sufficiently accurate data which are compared with (3.4)
on figure 13 where the flow angle is plotted linearly against y+.

Up to station 6M and for stations 10M and 11M the wall slope of the skew
angle (α− β) agrees well with the theory, if one makes allowances for an occasional
inconsistency of up to 0.5◦ between the WHWP at y+ ≈ 2 and the SHWP. In the
cross-over region however, at stations 7M–9M, the sign of the slope at the wall already
does not agree. This inconsistency may be due to the hot-wire directionality being
affected by a systematic error very near the wall, or the skew angle profile reaches the
predicted wall slope only for y+ < 2. Despite these shortcomings, our hot-wire data
provide clear evidence against coplanar velocity vectors near the wall. Together with
the evidence of Ölçmen & Simpson (1995b) who did not find a coplanar region down
to y+ = 4 using an LDA, this question should be definitively settled.
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Figure 13. Comparison of the calculated with the measured flow direction near the wall
on line (M).

4. Turbulence measurements

4.1. Wall shear stress fluctuations

To complement the mean skin-friction measurements of figure 6 the statistics of
the fluctuating part of the skin friction τ′w , as measured by the WHWP at the
dimensionless height of y+ = 1.8, are documented in figure 14. The turbulence level
is defined as Tτw = (τ′2w )1/2/τw and the skewness and flatness as Sτw = τ′3w/(τ′2w )3/2 and

Fτw = (τ′4w )/(τ′2w )2, respectively.
The general evolution of the three moments is qualitatively similar and rather as

expected. For two-dimensional ZPG boundary layers in the Reynolds number range
of this experiment typical values for Sτw and Fτw are 1 and about 4.5 (see e.g. Fernholz
& Finley 1996) and maxima and minima here differ at most by +7% and −15% for
both Sτw and Fτw . The location of the maxima and minima of Tτw lead those of Sτw
and Fτw and correspond more or less with the extrema of the streamwise pressure
gradient (cf. figure 7), whereas the extrema of Sτw and Fτw are both approximately at
the same position as those of cp itself (cf. figure 6). This reinforces the conclusion that
the evolution of the skin friction is dominated by the streamwise pressure gradient.
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Figure 14. Turbulence level Tτw , skewness Sτw and flatness Fτw
along the lines (U), (M) and (D).

4.2. Reynolds stresses

Profiles of the Reynolds stresses in inner-law scaling, i.e. plotted versus y+ = y(Uτ/ν),
are collected in figures 15–24. All the stress components are defined with respect to
the local external streamline coordinate system, since the discussion of the influence
of different degrees of three-dimensionality and of the interaction between Reynolds
stresses and mean flow is easiest in these coordinates. We recall that the measurements
were carried out with the THWP for y+ & 30 and with the SHWP with prongs
traversed through the wall for y+ & 3.

First, profiles are discussed in the region where skewing occurs in one direction only,
approximately from stations 2U to 6U, and where the streamwise pressure gradient
is mostly favourable. Then profiles are presented in the cross-over and the initial part
of the region where the adverse streamwise-pressure gradient falls to zero (cf. figure
7) and relaxation to two-dimensional flow occurs. It should be noted, however, that
the streamwise pressure gradients in the present experiment are not severe compared
with a highly accelerated (e.g. Fernholz & Warnack 1998) or a separating boundary
layer (e.g. Dengel & Fernholz 1990).

In inner-law scaling the Reynolds normal stress u′2/U2
τ shows a behaviour in

the viscous sub-layer and the buffer layer up to its peak which is located between
14 > y+ > 18 (figure 15) which is similar at all stations as well as similar to the
ZPG case (station 1U and Fernholz & Finley 1996, for instance). However, the
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along line (U).

peak value decreases in the streamwise direction by about 15% to (u′2/U2
τ )max = 6.1

before it recovers to the initial value of about 7. Since the skin-friction velocity
Uτ varies between 0.57 and 0.78 m s−1 in this x-range, most of the decrease can
be attributed to the normalization by U2

τ and hence the effect of streamwise and
spanwise pressure gradient remains small in the inner layer. The changes in the outer
layer on the other hand are much stronger. Here the normal stress component u′2/U2

τ

responds strongly to the streamwise pressure gradient, increasing where it is adverse
and decreasing where it is favourable. Noteworthy is the distinct plateau of increased
stress with a small secondary peak at stations 9U–11U of figure 15 which is due to the
adverse pressure gradient and possibly to the history accumulated in the cross-over
region. Such ‘plateau-type’ profiles do occur in mild adverse-pressure-gradient two
dimensional boundary layers (e.g. Dengel, Fernholz & Vagt 1981) because both the
mean shear gradient ∂U/∂y and u′v′ increase away from the wall thus augmenting
the turbulence production further away from the wall (Alving & Fernholz 1996). The
persistence of the plateau in a region where ∂p/∂x has become zero (downstream
of station 9) suggests that crossflow or history accumulated in the cross-over region
must be dominating the delayed relaxation to ZPG conditions. In particular, one
might speculate about the role of the inflection point in the W -profile (see e.g. figure
11) which may promote local instabilities.
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Figure 16 presents the Reynolds normal-stress component ρ v′2 in inner-law scaling.
The profiles show two regions where distinct changes occur: a relative minimum
around y+ ≈ 150 (station 6U) and a plateau (stations 9U and 10U) in the outer
region at y+ ≈ 1500, followed by an overshoot over the initial ZPG profile (1U).
The decrease of v′2/U2

τ in the near-wall region is comparable with that found in a
mildly accelerated two-dimensional boundary layer (Warnack 1996, data evaluated
by the second author) and is due to a decrease of ρ v′2 production, a process which
then extends to the outer region of the boundary layer (stations 9U and 10U) before
ρ v′2 increases again towards the exit of the ‘S’-duct. This increase is much stronger
than would normally be caused by the mild adverse pressure gradient (see also data
along line (D) in Bruns 1998, his figure 5.9) and must therefore be attributed to the
three-dimensionality of the flow or again to history effects. The slight increase of
v′2/U2

τ in the range below y+ ≈ 80 on the other hand is probably due to probe effects
close to the wall (see Österlund & Johansson 1995). The magnitude of the peak value
(v′2/U2

τ )max ≈ 1.30 and the location of the peak at about y+ = 200 for the (1U)-profile
agree with the data of Fernholz & Finley (1996).

The third Reynolds normal stress profiles w′2/U2
τ are presented in figure 17. Because

of the production term v′w′∂W/∂y in the Reynolds stress transport equation for w′2
one would expect a higher level of ρw′2 in three-dimensional than in two-dimensional
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along line (U).

boundary layers. This is in fact the case and the decrease of the stress level caused by
the favourable pressure gradient in two-dimensional boundary layers (see Warnack
1996) is compensated leading to values above the initial ZPG profile. The latter is
in agreement, both in magnitude and location of the peak, with measurements of
Warnack. In the cross-over region the spanwise normal stress levels in the log-range
are about 40% higher than in the initial ZPG profile and show self-similar behaviour
in the viscous sublayer and in the buffer layer. The largest deviations from the initial
ZPG profile at stations 1 occur in the downstream part of the ‘S’-duct along line (D)
where the cross-over effect is strongest and are shown in figure 18.

The profiles of twice the turbulent kinetic energy (the sum of all the normal
Reynolds stresses q′2) along line (U) follow those of ρ u′2, which is its main contrib-
utor, but develop a more distinct plateau starting further upstream (figure 19). The
maximum level of the plateau (q′2/U2

τ ≈ 9) on line (U) increases in the region of
strongest cross-flow on line (D) to even higher values of about 10 (not shown).

Of the three Reynolds shear stresses two, ρ u′w′ and ρ v′w′, exist only in
three-dimensional boundary layers. So streamwise pressure-gradient effects should
be more evident in the ρ u′v′-profiles while cross-flow effects should dominate the
two other components via, for example, the production terms containing the gradient
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∂W/∂y. Therefore, to facilitate the following discussion, the profiles of this mean
velocity gradient along the line (U) are presented first in figure 20.

The ρ u′v′-profiles along line (U) are shown in figure 21. We note at this point
that the maximum value of the u′v′-profile at station 1U is about 12% below the
value found in a canonical two dimensional boundary layer (e.g. Fernholz & Finley
1996). It has been verified that this is a peculiarity of the Lausanne wind tunnel,
possibly a remnant of the tripping, and not a probe effect. The magnitude of u′v′
clearly decreases with increasing streamwise acceleration up to station 7U and then
increases again in the adverse-pressure-gradient and cross-over region (stations 8U to
11U) with an overshoot over the initial ZPG profile in the outer layer. The decrease
in magnitude of ρ u′v′ is consistent with the decrease in ρ v′2 appearing in the main
production term v′2 (∂U/∂y) as well as with the numerical results of Sendstad &
Moin (1992). The behaviour of the Reynolds shear stress is however opposite to that
described by Schwarz & Bradshaw (1993), who found an increase of | ρ u′v′ | as
skewing increased. This may be due to the zero streamwise pressure gradient in the
Schwarz & Bradshaw boundary layer but we do not find this explanation satisfactory
since in our measurements cross-flow effects do not appear to increase | u′v′ | and a
zero streamwise pressure gradient does not lead to an increase either. The remaining
possible culprits are measurement error and history effects.

Figure 22 shows that the ρ v′w′ component of the Reynolds shear stress which, added
vectorially to ρ u′v′ yields τtot, increases in the streamwise direction with cross-flow.
The profiles develop two extrema with the larger one reaching (v′w′/U2

τ )max = −0.3
at the upper end of the log-region y+ ≈ 800 of station 5U, which is roughly one third
of that of ρ u′v′. The relevant production term for v′w′ is v′2∂W/∂y and, since v′2 does
not change much in this region (cf. figure 16), it is the gradient ∂W/∂y and its sign
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Figure 19. Profiles of twice the kinetic turbulent energy in inner-law scaling along line (U).

which determines the shape of the ρ v′w′-profile. A comparison of figures 20 and 22
shows that the maxima and minima of ∂W/∂y indeed line up approximately with the
minima and maxima, respectively, of ρ v′w′. It is also noted that the sign change of
the shear stress occurs further out in the boundary layer with increasing streamwise
distance x.

Since the third Reynolds shear stress component, ρ u′w′, does not appear in the
three-dimensional boundary layer equations, its discussion is often omitted. As shown
in figure 23, it reaches however peak values twice as large as ρ u′v′ in the upstream
bend of the ‘S’ (stations 5U and 6U) which is in general agreement with the results
of Ölçmen & Simpson (1995b). From station 1 to 6, the sign of ρ u′w′ is negative
near the wall with a minimum at y+ ≈ 15 which agrees with the DNS of Sendstad &
Moin (1992). The profiles then cross zero at y+ ≈ 150, reaching a smaller maximum
at y+ ≈ 1000. In this region the behaviour of ρ u′w′ is almost identical along the
three lines (we show only profiles along line U) indicating that the spanwise pressure
gradient is dominant while the influence of the streamwise pressure gradient is
minimal.

Downstream of station 6, the character of the profiles on line (U) changes and the
profiles along the lines (U) and (D) start to differ significantly (figures 23 and 24)
because of the different cross-over profiles. This behaviour can be explained by the
change of sign of the spanwise pressure gradient and by the evolution of the two
main production terms, v′w′∂U/∂y + u′v′∂W/∂y in the Reynolds transport equation
for u′w′. Since u′v′ is always negative, the second production term changes sign with
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Figure 20. Profiles of the mean spanwise velocity gradient (ESCS) in inner-law scaling
along line (U).

∂W/∂y from positive near the wall to negative further out in the boundary layer and,
with ∂U/∂y always positive, the first production term changes sign with v′w′ from
positive near the wall to negative further out. This also explains the relatively large
negative value of ρ u′w′ close to the wall because both production terms have the
same sign.

The change of sign of the spanwise pressure gradient has the effect that on line
(U) near the wall ρ u′w′ → 0 for increasing downstream distance. Further out in the
profile, the region of ρ u′w′ > 0 virtually disappears and a new small negative peak
develops which then starts to decay at the last station where the boundary layer is
relaxing to two dimensional conditions. It is interesting to note that the y+-location
where u′w′ changes sign corresponds closely to the largest zero-crossing of ∂W/∂y
(compare figure 23 with the enlarged inserts in figure 20 and see Bruns 1998). These
effects are much more pronounced along line (D) where the two extrema of the
upstream profiles (e.g. at 6U of figure 23) are essentially flipped over at stations 9D
to 11D of figure 24.

4.3. Characteristic flow angles

An idea about the link between the behaviour of mean flow and turbulent fluctuations
in a three-dimensional boundary layer can be gained from the profiles of the skew
angle of the mean velocity (α − β), the mean shear angle γg and the Reynolds shear
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stress angle γτ. The last two are defined by

γg = tan−1

(
∂W/∂y

∂U/∂y

)
and γτ = tan−1

(
v′w′

u′v′

)
. (4.1)

In most but not in all pressure-driven boundary layers with unilateral skewing γτ lags
behind γg indicating that the turbulence structure needs time to adapt to the changes
in the mean shear field. It is also to be expected that the size of the lag will vary
between the wall and the edge of the boundary layer, decreasing when the wall is
approached.

Figure 25 shows profiles of the three angles (α− β), γg and γτ in inner-law scaling
at three stations on the lines (U) and (D), respectively. The first two stations, 4 and
6, are in the range of the upstream bend and the shear stress vector lags the velocity
gradient vector over a larger y+-interval at station 4 than at station 6 where the
turbulence had more time to adjust to the mean shear. All three profiles collapse
onto one line in the near-wall region. This is also more or less the case for the
measurements of Compton & Eaton (1995) but not for those of Ölçmen & Simpson
(1996) where γτ lags γg . The profiles at stations 10U and 10D are characteristic of
cross-over behaviour and all three angles change sign twice. The disappearance of
the the lag between γτ and γg is due to the change of sign of the spanwise pressure
gradient and the reduction of γg , while relaxation is not thought to play a role.



Three-dimensional turbulent boundary layer 197

0

0.2

10 102

1U
7U
8U
9U
10U
11U

2U
1U

3U
4U
5U
6U

y+
103 104

–0.4

0.4

0.2

–0.4

v!
w

!
 /U

τ
2

–0.2

0

0.4

–0.2

v!
w

!
 /U

τ
2

Figure 22. Profiles of the Reynolds shear-stress ρ v′w′ (ESCS) in inner-law scaling
along line (U).

4.4. Triple correlations

Triple products of the fluctuating velocities must be known for the evaluation of
the turbulent diffusion terms in the Reynolds-stress transport equations. The whole
set of triple-correlation profiles was measured and presented in Bruns (1998). Here
we confine the discussion to the u′v′2- and v′2w′-profiles which are important for the
transport of −u′v′ and −v′w′ and can be compared with the data of Schwarz &
Bradshaw (1994) for y/δ > 0.15 in the upstream bend of the ‘S’-duct.

Data of u′v′2/U3
τ in a two-dimensional ZPG boundary layer for the same Reynolds

number range as ours can be found in the literature, for instance in Erm (1988) and
Fernholz & Finley (1996, their figure 74). Their profiles agree qualitatively with the

present profiles of u′v′2 , shown in figures 26 and 27: they show a double minimum
(the inner minimum on these figures is at y+ < 30 and could not be reached by
the THWP) and they scale on U3

τ , revealing approximate self-similarity in the range
30 < y+ < 100 for the unilaterally skewed velocity profiles of stations 1–6 (cf. figures
26 and 27). This behaviour is in agreement with data of Warnack (1996) in a mildly
accelerated two-dimensional layer, but disagrees with the measurements of Murliss,
Tsai & Bradshaw (1982). In figures 26 and 27, as well as in Warnack (1996) the value
of u′v′2/U3

τ at the outer minimum is about −0.35 for ZPG conditions and varies
between −0.2 and −0.5 for favourable and adverse pressure gradients, respectively,
at least up to station 4 where ∂p/∂x has not yet changed sign. After the change
from adverse to favourable pressure gradient on line (U) (see figure 7), history effects
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along line (U).

become, however, evident as the outer minimum at station 6U is still below −0.3, for
instance.

From our data it appears that the outer part of the u′v′2-profile in the first bend
is therefore mostly affected by the streamwise pressure gradient. The question is
however far from being resolved since the data of Schwarz & Bradshaw (1994) with
a comparable unilateral skewing but with an approximately zero streamwise pressure
gradient show an increase of the outer peak magnitude with increasing skew angle by
about a factor of two and a change of sign from negative to positive in the outer region.

In the flow region where bilateral skewing occurs (from station 7 on downstream),
the profiles behave qualitatively similarly to those in the upstream region with,
however, some marked differences: The approximate self-similarity near the wall is
considerably degraded, especially on line (D). Second, the outer minimum moves out
to y+ ≈ 2000 but the values of u′v′2 are very different on lines (U) and (D) (−0.25
and −0.5, respectively), indicating a correlation with the degree of cross-over in the
velocity profiles (stronger on D than on U). Another curious difference between lines
(U) and (D) is the appearance of triple minima (including the minimum at y+ < 30)
at stations 8U to 10U which, as far as we can see, can only be attributed to the
different streamwise pressure gradient histories.

Like any cross-correlation containing an uneven power of w′, the v′2w′ distribution
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along line (D).

(see also the v′w′-profiles in figure 22) starts out as nominally zero in the upstream
two dimensional part. With growing unilateral skewing of the boundary layer, the
profiles develop a small negative peak in the outer region and a positive peak near
the wall (figure 28) which cannot be resolved since the THWP cannot reach y+ < 30
and errors of the THWP increase considerably below y+ ≈ 50. It is however possible
to discern a correlation between the values of v′2w′ and the amount of crossflow, in
agreement with the increase of v′w′ (see figure 22) and with the measurements of
Schwarz & Bradshaw (1994). For the profiles of v′2w′ in the cross-over region the
same behaviour as for v′w′ is observed.

Schwarz & Bradshaw (1994) defined a vertical transport velocity for the fluctuating
kinetic energy q′2:

Vq2 = v′q′2/q′2, (4.2)

where v′q′2 = u′2v′ + v′3 + v′w′2.
Figure 29 shows that q′2 was generally transported away from the wall by v′ with

a large peak of Vq2/Uτ in the outer region and a smaller one near the wall. The outer
peak is in qualitative agreement with the data of Schwarz & Bradshaw but the trend
with growing crossflow is opposite. In the present case the transport is diminished
which could be explained by the effect of the favourable pressure gradient being
stronger than the increase due to the growing crossflow in a boundary layer with
zero streamwise pressure gradient. In the log-region the vertical transport reverses
direction in the Schwarz & Bradshaw (1994) experiment which is consistent with a
gradient-diffusion-like transport but is not observed in our data.

4.5. The two-point correlation coefficient Ruu

An impression of the behaviour of the large-energy-containing eddies due to crossflow
may be obtained from two-point correlations. Two-point correlations have been
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Figure 26. Profiles of u′v′2 (ESCS) in inner-law scaling on line (U).

measured for all three components of the fluctuating velocities by Littell & Eaton
(1994) on a rotating disk. In our study, satisfactory results were obtained only for the
two-point correlation coefficient Ruu, not presented in Littell & Eaton (1994), which
was measured between the WHWP positioned 0.33 mm above the wall and a SHWP
probe which was traversed to 209 stations in the (y, z)-plane with a denser spacing
close to the fixed probe. It is noted that both probes were everywhere aligned with the
local mean flow direction to minimize probe interference effects, i.e the indices of Ruu
should be interpreted as (u′2 +w′2)1/2. For other two-point correlations our multi-wire
probes, despite their miniaturization, could not be moved close enough together to
obtain meaningful results.

In the following, Ruu as defined above is presented in the (y, z)-plane at three
positions characteristic of zero (1M), unilateral (6M) and bilateral (10M) skewing.
Figure 30(a) shows the almost symmetric distribution of Ruu at station 1M with
asymmetries appearing only in the contours of very small correlation. The effect
of the spanwise pressure gradient on the structures is clearly visible at station 6M
(figure 30b) where the contours are tilted in the direction of negative spanwise pressure
gradient. This is in agreement with the near-wall calculations of Sendstad & Moin
(1992, their figure 4.43) and with Littell & Eaton (1994). Since the boundary layer
has a thickness of 70 mm at this position, we see only the inner third of the layer
and here the strongest deflections are at about y = 7 mm which would be equivalent
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Figure 27. Profiles of u′v′2 (ESCS) in inner-law scaling on line (D).

to y/δ = 0.10. At position 10M (figure 30c) where bilateral skewing occurs, the
asymmetry of the Ruu-pattern has started to shift to the opposite side, in agreement
with the change of sign of the transverse pressure gradient.

These measurements represent further evidence of the structural modifications
brought about by three-dimensionality. Interestingly, at all three stations of figure 30
the initial steep decrease of Ruu from unity to values around 1

3
is seen to be unaffected

by three-dimensionality, while the tails Ruu 6 0.3 are significantly affected. This can
be quantified if Ruu along any ray emanating from the location of the fixed WHWP
is represented as a superposition of a fast-decaying part Ruu,fast and a slowly decaying
part Ruu,slow (with max(Ruu,slow) ≈ 1

3
), which may be associated with a short and

a long integral length scale, respectively. The short scale associated with Ruu,fast is
Λ+
short = O(50), essentially independent of the measuring location and the direction in

the (y, z)-plane. The long scale on the other hand, associated with Ruu,slow , is estimated
to be Λ+

long = O(500) along the y-direction and varies little between the three stations.

Along 45◦ lines in the (y, z)-plane, the ‘long’ integral scale is Λ+
long = O(250) at station

1M and remains approximately the same at 6M on the side of increasing z. However,
on the side of decreasing z a clear increase to Λ+

long = O(500) is observed at 6M. The
different behaviour of the two parts of Ruu is consistent with the spectra of Bruns
(1998), which show an influence of three-dimensionality only at low frequencies, but
it appears premature to advance a physical interpretation for the observed behaviour
of the two-point correlation.
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4.6. Reynolds stress transport

The following discussion of the equation for the turbulent kinetic energy transport
(TKE) at four characteristic stations will elucidate the streamwise changes in the
energy budget (see Bruns 1998 for the evaluation of the other equations). The
stations chosen are 1M where the boundary layer is two-dimensional and where
∂p/∂x = 0, 3M with unilateral skewing and ∂p/∂x = 0, 6M with unilateral skewing
and ∂p/∂x < 0, and 10M with bilateral skewing and ∂p/∂x > 0.

All terms in the TKE-equation are evaluated in the local external streamline
coordinate system. Spatial derivatives were calculated by finite differences from three
smoothed experimental profiles (for details see Bruns 1998).

The terms in the TKE-equation, given for example by Hinze (1975), that were
accessible to our measurements were evaluated individually, while the terms that
could not be determined were lumped into the balance term

Balance = ν

[
∂u′i
∂xj

∂u′i
∂xj

+
∂2u′iu′j
∂xi∂xj

]
− 1

ρ

[
∂p′u′

∂x
+
∂p′v′

∂y
+
∂p′w′

∂z

]
− ν ∂

2u′iu′j
∂xi∂xj

, (4.3)

which was computed from the TKE-equation. Since the dissipation contributes most to
this balance term it is labelled ‘dissipation’ in figure 31. In agreement with Chesnakas
& Simpson (1996) we find that the energy budget throughout the 3DTBL is dominated
by the production and dissipation terms (note the change in scale beyond 5). A
comparison of the data in the two-dimensional ZPG part of the boundary layer
(station 1M) shows good agreement with the DNS data of Spalart (1988), thus
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establishing confidence in the evaluation procedure (see Bruns 1998). As a sort
of calibration standard for the four graphs in figure 31, the rate of dissipation ε
was approximated by U3

τ /κy (κ = 0.40 being the Kármán constant) for the two-
dimensional boundary-layer profile and added to the figures as solid line.

Here, a general comment is in order. The measurements of Compton & Eaton
(1995) and Chesnakas & Simpson (1996) show that the maximum of the production
term non-dimensionalized by ν/U4

τ lies at y+ ≈ 15 and has a value of 0.8 and 0.28,
respectively. Since our last measuring station is at y+ = 40, we can only estimate this
maximum. As the peak of the production profile corresponds closely to that of the
Reynolds normal stress ρ u′2, y+ ≈ 15 is consistent with figure 15 and also agrees with
measurements of the production term in a favourable- and zero-pressure-gradient
boundary layer by Fernholz & Warnack (1998) and Fernholz & Finley (1996), re-
spectively. The maximum of the principal production term [(u′v′∂U/∂y)ν/U4

τ ], on the
other hand, can be estimated from figure 15 to be about 0.28 which corresponds to
the maximum measured by Chesnakas & Simpson (1996). It is also consistent with
the maximum value of 0.25 of the principal production term [(u′v′∂U/∂y)ν/U4

τ ] cal-
culated by Rotta (1962) for a two-dimensional ZPG boundary layer, as the additional
production term [(u′v′∂W/∂y)ν/U4

τ ] in a 3DTBL is expected to only moderately
increase production.

Since our data do not extend close enough to the wall, although they extend closer
to the wall than earlier hot-wire measurements, a detailed discussion, as for example
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in Schwarz & Bradshaw (1994), is not appropriate. The one preliminary conclusion
which can however be drawn is that production and dissipation decrease slightly
with increasing skewing of the boundary layer (6M) and increase at the cross-over
station (10M). The dissipation term at 10M is balanced by the production and by
the turbulent diffusion which peaks at about y+ = 400. The increase of the turbulent
diffusion term results mainly from larger values of the triple products u′2v′, v′3 and
v′w′2 entailing larger gradients in the vertical direction (for details see Bruns 1998).
Similar conclusions hold for the terms of the Reynolds stress transport equations (see
Bruns 1998).

5. Discussion of local non-equilibrium and conclusions
The measurements of Bruns (1998) were performed with the goal of obtaining,

by means of hot-wire probes, a complete set of turbulence data as close to the
wall as possible which could serve to further elucidate their evolution as a function
of spanwise and streamwise pressure gradients. In this paper we have presented a
selection of these data for which we can offer some interpretation or speculation.
For a wealth of other data, in particular data for all the measuring stations of
figure 3, different measures of the boundary layer thickness, integral length scales,
higher statistics of u′ and a discussion of the Reynolds stress transport equations the
reader is referred to Bruns (1998). Furthermore it is planned to make the original
data available on the website http://lmfwww.epfl.ch/lmf/.

The first general conclusion concerns some open problems of near-wall mea-
surements in presssure-driven 3DTBLs with unilateral and bilateral skewing. To
simultaneously measure all three components of the instantaneous velocity at a large
number of points, the most economical solution is a triple hot-wire probe. Since no
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miniature probe of this type was commercially available, a probe had to be designed,
manufactured and tested. Owing to the limits of probe size the region between the
wall and y+ ≈ 40 was however only accessible to single-wire probes in our study with
prongs traversed through the test plate. We believe that with the development of these
specialized hot-wire probes, their application in TBLs has now more or less reached
its limits. Further progress seems possible only with highly focused laser beams in the
manner of Ölçmen & Simpson (1995a) and Chesnakas & Simpson (1996) or by direct
numerical simulation (e.g. Sendstad & Moin 1992). Having experienced at first hand
some of the problems associated with measurements in the immediate vicinity of the
wall, we believe that the quality of the different measuring techniques will finally have
to be decided by DNS (see e.g. the data of Compton & Eaton 1995, and the DNS of
Sendstad & Moin 1992).

Next we make a comment on the history effects that have been invoked throughout
this text to ‘explain’ discrepances between expected (on the basis of some simplified
idea) and actually measured profiles. It is clear that history effects are in principle
accounted for by appropriate Reynolds stress transport models. However, the asso-
ciated closure hypotheses typically involve assumptions of local equilibrium in some
form, e.g. local ‘diffusivities’ and redistribution mechanisms of Reynolds stresses.
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In particular, local equilibrium of turbulence is believed to prevail in a wall layer
below, say, y+ ≈ 50. This wall layer has also been the object of low-dimensional
dynamical models for turbulence-sustaining cycles involving the principal coher-
ent near-wall structures (streaks, streamwise vortices) and their instabilities (see e.g.
Jiménez & Pinelli 1999). To tackle the question of their possible ‘universality’, it
is again of interest to investigate whether the turbulence reaches local equilibrium
for y+ 6 50 in the present three-dimensional turbulent boundary layer. If it does
not, the chances of formulating any ‘universal’ model of the wall cycle are clearly
compromised.

To advance this discussion, an attempt is made to quantify the degree of local
equilibrium in the present boundary layer. To this end, we assume that the Reynolds
stress profiles are fully determined by local quantities, i.e. by the local Uτ and the local
pressure gradients. Furthermore we concentrate on the inner part of the Reynolds
stress profiles in inner-law scaling and their deviations from ZPG-profiles. Under these
assumptions, any stress component S(i) at a measuring location (i) can be expanded
in a double Taylor series with respect to the two non-dimensional pressure gradients.
Working in the external streamline coordinate system (ESCS) and truncating the
series at linear order, which seems appropriate for the weak to moderate pressure
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gradients of our experiment, one can approximate

S(i)(y
+;Π (ESCS)

x ,Π (ESCS)
z )− S(1M)(y

+; 0, 0)

= Π
(ESCS)
x,(i) ∆xS(y+) +Π

(ESCS)
z,(i) ∆zS(y+) + O(Π2), (5.1)

where the profiles at station 1M are taken as two-dimensional ZPG reference profiles,
Π

(ESCS)
•,(i) = (ν/ρU3

τ )∂p/∂• are the non-dimensional pressure gradients in external

streamline coordinates at station (i), and ∆xS(y+) and ∆zS(y+) must be universal
functions associated with the quantity S . These functions can be determined by
solving a system of two of the above equations corresponding to different stations (i)
with different ∂p/∂x and ∂p/∂z. In practice, this is carried out after smoothing the
profiles with a 100-point quadratic Spline fit and a low-pass filter. Examples of these
functions, determined from the station pairs 3U–3D and 6U–6D are shown as figures
32 and 33 for the six Reynolds stresses. For three of the components, both data from
the THWP (down to y+ = 30) and from the SHWP (down to y+ = 3) have been used
which give an impression of the measurement error in the overlap region of the two
probes.

From figures 32 and 33 it is obvious that the two functions ∆ are far from universal
over the entire boundary layer thickness all the way down to the last available point
at y+ = 3 (note that even the sign of ∆x,u′2 (y

+ = 3) is different on figures 32(a) and
32(b)). From this it must be concluded that, even for our moderate pressure gradients,
the boundary layer under investigation is clearly out of equilibrium all the way into
the viscous sublayer.

It is noteworthy that, despite the non-universality of the functions ∆, the above
local Taylor expansion provides interpolated profiles of a surprising quality for
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nearby stations. An example is given in figure 34 where all Reynolds stress profiles
are reproduced within measurement accuracy by (5.1) where the ∆-functions have
been determined from the nearby pair (6U–6D). Again, the measurement error can
be assessed in the overlap region of the SHWP and the THWP.

However, when using the ‘local equilibrium hypothesis’ to reproduce profiles further
away from the reference stations, the results are disastrous, as shown for the example
of u′2 and u′w′ on figures 35 and 36, respectively. Note that in these two figures
we have also included the station 4M, which is located upstream of the reference
stations 6U and 6D, since (5.1) should be valid for any combination of stations if
the underlying ‘local equilibrium hypothesis’ holds. The corresponding ‘predictions’
of u′v′ (not shown for brevity’s sake) by (5.1) are just as bad. In fact, for most
of the non-diagonal Reynolds stress components the ZPG-profile is a much better
approximation than the profile obtained from (5.1)!

These last figures make it amply clear that the ‘local equilibrium hypothesis’ is
inappropriate over the entire thickness of the boundary layer. In other words, we
must conclude that a turbulence model based on some form of local equilibrium
assumptions has probably little chance of consistently describing real turbulence in
complex 3DTBLs. Besides this general conclusion, figures 34 to 36 also allow the
specific and potentially useful conclusion that different histories of weak to moderate
streamwise pressure gradients apparently have little effect on the profiles (see the
excellent fit in figure 34), while different histories of the spanwise pressure gradient
seem to have a much stronger effect on the degree of non-equilibrium (see the effect
of sign changes of ∂p/∂z on the fits of figures 35 and 36). The reader is however
warned that stronger streamwise pressure gradient variations do perturb equilibrium
significantly, as our ‘local equilibrium hypothesis’ has also failed in the strongly
decelerated and accelerated two-dimensional boundary layers of Dengel & Fernholz
(1990) and Fernholz & Warnack (1998), respectively.
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Finally, we would like to re-emphasize that the interpretation of the present data,
being among the first near-wall turbulence data in a region of bilaterally skewed cross-
flow profiles, are certainly not definitive. We hope that they will stimulate further
analysis and comparisons with direct simulations of 3DTBLs and with turbulence
models.

This investigation owes much to the generous support and symphathy of I. L.
Ryhming. The first author acknowledges the finacial support of the Deutsche
Forschungsgemeinschaft (DFG) and of COST F1 through a grant from the Swiss
Federal Office of Education and Science.

The triple-wire probe would not exist without the patience and skill of A. Ebner
and the whole research project has much benefited over the years from the assistance
and advice of T. V. Truong.
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Österlund, J. M. & Johansson, A. V. 1995 Dynamic behaviour of hot-wire probes in turbulent
boundary layers. Proc. ETC-5, Sienna, pp. 398–402. Kluwer.



Three-dimensional turbulent boundary layer 213

Parker, R. D. 1994 Boundary layer calculations of the S-duct, Pt.1. Internal Rep. T-94-29. IMHEF,
EPFLausanne.

Parker, R. D. & Bruns, J. M. 1996 Anisotropic turbulence modeling in a complex three-dimensional
boundary layer flow. Comput. Fluid Dyn. 96: Proc. 3rd ECCOMAS Comp. Fluid Dynamics Conf.,
Paris, pp. 146–152. Wiley.

Parneix, S. & Durbin, P. 1997 Numerical simulation of three-dimensional turbulent boundary
layers using the V2F model. CTR Ann. Res. Briefs, pp. 135–148.

Pierce, F. J. & East, J. L. 1972 Near-wall collateral flow in three-dimensional turbulent boundary
layers. AIAA J. 10, 334–336.

Rogers, B. K. & Head, M. R. 1969 Measurment of three-dimensional boundary layers. J. R. Aero.
Soc. 73, 796–798.

Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Progr. Aeronaut Sci. 2, 5–219.

Ryhming, I. L., Truong, T. V. & Lindberg, P. A. 1992 Summary and conclusions for test-case
T1, numerical simulation of unsteady flows and transition to turbulence. Proc. ERCOFTAC
Workshop, EPFL, 28. March 1990, Lausanne, Switzerland (ed. O. Pironneau, W. Rodi, I. L.
Rhyming, A. M. Savill, T. V. Truong), pp. 197–243. Cambridge University Press.

Schwarz, W. R. & Bradshaw, P. 1992 Three-dimensional turbulent boundary layer in a 30 degree
bend: Experiment and Modeling. Thermosci. Div. Rep. MC-61, Dept. of Mechanical Engineerin,
Stanford University.

Schwarz, W. R. & Bradshaw, P. 1993 Measurements in a pressure-driven three-dimensional
turbulent boundary layer during development and decay. AIAA J. 31, 1207–1214.

Schwarz, W. R. & Bradshaw, P. 1994 Turbulence structural changes for a three-dimensional
turbulent boundary layer in a 30◦ bend. J. Fluid Mech. 272, 183–209.

Sendstad, O. & Moin, P. 1992 The near-wall mechanics of three-dimensional boundary layers.
Thermosci. Div. Rep. TF-57, Dept. of Mechanical Engineering, Stanford University.

Shanebrook, J. R. & Hatch, D. E. 1970 Discussion of the paper by W. F. Klinksiek & F. J. Pierce.
Trans. ASME D: J. Basic Engng 92, 90–91.

Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid
Mech. 187, 61–98.

Squire, H. B. & Winter, K. G. 1951 The secondary flow in a cascade of airfoils in a nonuniform
stream. J. Aero. Sci. 18, 271–277.

Truong, T. V. & Brunet, M. 1992 Test case T1: Boundary layer in a ‘S ’-shaped channel. Proc.
Ercoftac Workshop on Numerical Simulation of Unsteady Flows and Transition to Turbulence.
Cambridge University Press.

Vagt, J.-D. & Fernholz, H. H. 1973 Use of surface fences to measure wall shear stress in
three-dimensional boundary layers. Aero. Q. 24, 87–91.

Vagt, J.-D. & Fernholz, H. H. 1979 A discussion of probe effects and improved measuring
techniques in the near-wall region of an imcompressible three-dimensional turbulent boundary
layer. AGARD Conf. Proc. 271, pp. 10.1–10.17.

Wagner, P. M. 1991 The use of near-wall hot-wire probes for time-resolved skin-friction measure-
ments. Advances in Turbulence vol. 3, pp. 524–529. Springer.

Warnack, D. 1996 Eine experimentelle Untersuchung bescheunigter turbulenter Wandgren-
zschichten. Dissertation TU Berlin (D 83).

Webster, D. R., DeGraaff, D. B. & Eaton, J. K. 1996 Turbulence characteristics of a boundary
layer over a swept bump. J. Fluid Mech. 323, 1–22.


